

Серия 700

Резервуарный клапан с вертикальным поплавком для двухуровневого управления

Модель 750-66-В

- Наполнение резервуаров
 - Функционирование при очень низком давлении
 - □ Низкий уровень шума
 - □ Системы с высокой стоимостью электроэнергии
 - □ Системы с низким качеством воды
- Выход из резервуара
 - □ Распределительные сети
 - □ Наполнение и промывка систем водоотведения

Резервуарный клапан с вертикальным поплавком для двухуровневого управления модели 750-66-В – гидравлически управляемый, с диафрагменным приводом, двухкамерный клапан. Клапан открывается, когда уровень в резервуаре достигает минимально заданной величины и закрывается, когда уровень достигает максимально заданной величины.

Преимущества и особенности

- Автономный не требует внешнего источника энергии
- Управляется поплавковым механизмом
 - □ Возможность работы в режиме открыт/закрыт (on/off)
 - □ Высокая устойчивость к кавитации
- □ Подходит для воды низкого качества
- □ Обеспечивает циркуляцию воды в резервуаре
- Двухкамерный
 - □ Полное открытие и закрытие с помощью электросигнала
 - □ Снижает потери напора
 - □ Низкий уровень шума
 - □ Плавное закрытие
 - □ Диафрагма защищена от повреждений
- Наружная установка
 - □ Удобный доступ к клапану и поплавку
 - □ Легко настраиваемый
 - □ Малый износ деталей
- Не требует сложного обслуживания на линии
- Универсальная конструкция возможность добавления дополнительных функций

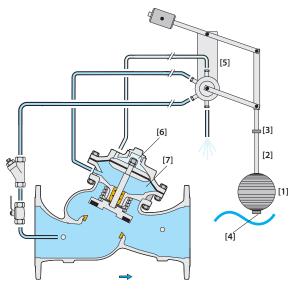
Основные дополнительные функции

- Поддержание давления «до себя» 753-66
- Двухуровневая электрическая поплавковая камера 750-66-65
- Регулирование расхода 757-66-U
- Предупреждение гидроудара при резком закрытии 750-66-49
- Поддержание минимального уровня 75А-66

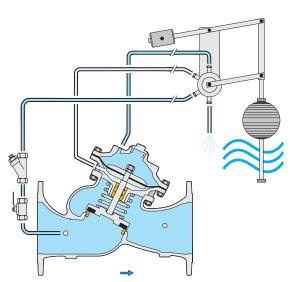
См. соответствующую документацию Бермад

Модель 750-66-В Серия 700

Принцип действия


Клапан модели 750-66-В оборудован четырех ходовым поплавковым механизмом.

Поплавок [1] скользит вдоль штока [2]. Как только поплавок достигает верхнего или нижнего ограничителя, рычаг механизма, под давлением поплавка, смещается либо вниз, либо вверх и меняет положение переключателя [5]. Пока поплавок находится между ограничителями, клапан остается в своем последнем положении.


При достижении верхнего уровня происходит переключение подачи потока в верхнюю рабочую камеру [6], и стравливание давления с нижней рабочей камеры [7] что заставляет клапан закрываться.

При достижении нижнего уровня происходит переключение подачи потока в нижнюю рабочую камеру, и стравливание давления с верхней камеры, что заставляет клапан открываться.

Для клапанов диаметров 250 мм и больше предусмотрена система сокращения времени реагирования.

Нижний уровень – клапан открыт

Верхний уровень – клапан закрыт

Характеристики контура управления

Стандартные материалы:

Поплавковый механизм:

Корпус: Латунь или нержавеющая сталь 316

Уплотнения: Синтетический каучук

Внутренние детали: Латунь или нержавеющая сталь 316 Механизм рычага: Латунь или нержавеющая сталь 316 Поплавок: Пластик

Шток поплавка: Нержавеющая сталь

Основание: Сталь с эпоксидным покрытием или нержавеющая сталь

Трубки и фитинги: Нержавеющая сталь, медь или латунь

Аксессуары:

Нержавеющая сталь 316, латунь и каучуковые эластомеры

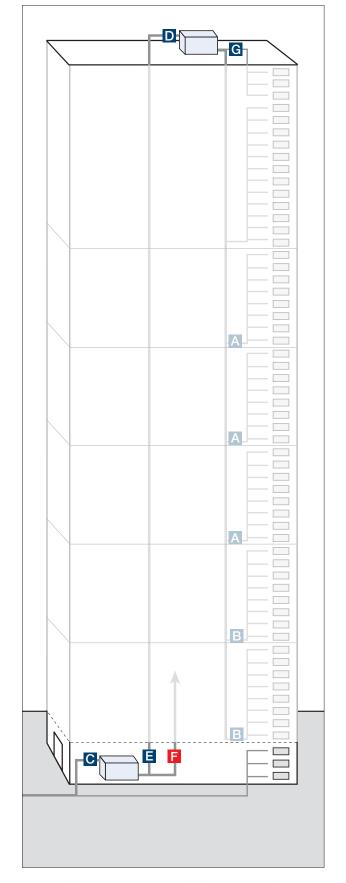
Примечания:

- Минимальная разница уровней на штоке: 15 см
- Максимальная разница уровней на штоке: 54 см
- Каждое звено штока 56 см.

С клапаном поставляется одно звено

- Поставка дополнительного звена штока (по просьбе клиента) требует дополнительного противовеса.
- При давлении на входе ниже 0.5 атм или выше 10 атм проконсультируйтесь на заводе.
- Рекомендуемая скорость потока: 0.3-6.0 м/сек

См. рекомендации по установке поплавка


Модель 750-66-В Серия 700

Типовая система регулирования уровня резервуара, установленного на крыше высотного здания

Система водоснабжения высотного здания имеет ряд специфических факторов:

- В случае централизованного источника водоснабжения его отключение недопустимо
- Ущерб от перелива резервуара, может быть особенно значительными и даже опасным
- Резервуары обычно располагаются вблизи от жилых и офисных помещений. Необходимо избегать шумов, связанных с функционированием или техобслуживанием клапанов
- Большинство нужд потребителей высотных зданий (питьевая вода, системы противопожарной безопасности, кондиционирование воздуха и т.д.) полностью зависят от надежного функционирования системы резервуаров
- Необходимо установления приоритета потребителей верхних этажей и системы противопожарной защиты над наполнением резервуара
- Все резервуарные системы запроектированы для обеспечения максимального (аварийного) потребления, в действительности же, фактическое потребление, как правило, гораздо меньше, поэтому существует опасность застоя воды в резервуаре

Клапан модели 750-66-В и инженерная поддержка специалистов Бермад позволят обеспечить подходящее решение.

- А Редукционная система высокой зоны
- В Редукционная система (двухступенчатая) низкой зоны
- С Система контроля нижнего резервуара
- Система контроля резервуара расположенного на крыше здания
- **Е** Система водоснабжения
- Система противопожарной безопасности
- **G** Система водоснабжения верхних этажей

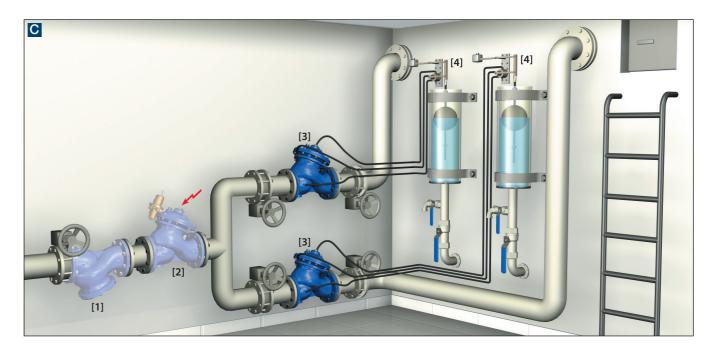
Модель 750-66-В

Серия 700

Установка резервуара на крыше высотного здания

Контролирование уровня резервуара, установленного на крыше высотного здания, происходит при помощи электрического сигнала от насоса, находящегося внизу здания. Ущерб, причиненный переливом воды из резервуара, установленного на крыше высотного здания, может быть особенно значительным, поэтому рекомендуется дополнительная защита.

Резервуарный клапан с вертикальным поплавком для двухуровневого управления модели 750-66-В отлично подходит для этой задачи.


Для установления приоритета потребителей верхних этажей и системы противопожарной защиты, над клапаном 750-66-В устанавливают клапан с функцией поддержания давления «до себя» модели 730.

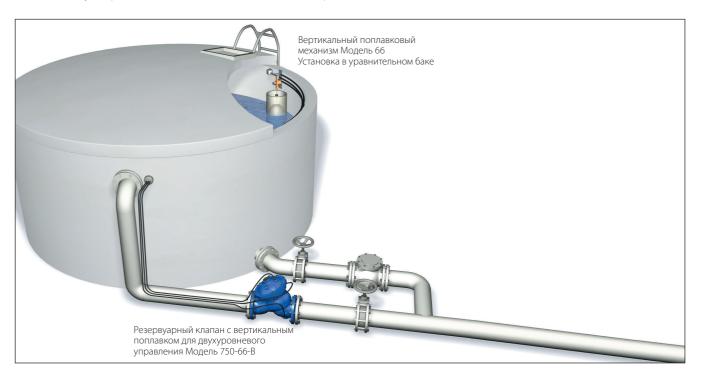
Установка резервуара в подвале здания

Проектирование резервуара в подвале здания имеет ряд специфических факторов:

- В случае централизованного источника водоснабжения его отключение недопустимо
- Ущерб от перелива резервуара, может быть особенно значительными и даже опасным
- Уровень шума должен быть минимальным
- Уровень подаваемого давления в резервуар через клапан может быть низким Клапан модели 750-66-В отлично подходит для решения этой задачи.

Дополнительно к клапану модели 750-66-В, рекомендуется установка следующего оборудования:

- [1] Фильтр модели 70F для защиты от инородных предметов и повреждения оборудования
- [2] Клапан поддерживающий давление «до себя» модели 730-65
- [3] Параллельное резервное подключение для обеспечения бесперебойной подачи
- [4] Установка поплавка снаружи резервуара


Модель 750-66-В Серия 700

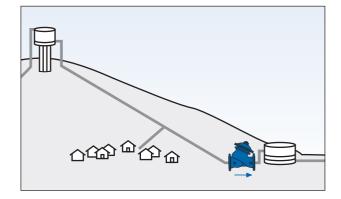
Применение

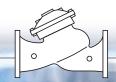
Инфраструктурные резервуары

Использование резервуаров в системе водоснабжения позволяет сократить время работы насосных агрегатов и, как результат, значительно уменьшить расходы.

Оптимальное проектирование парка резервуаров требует подбора резервуарных клапанов. Даже при очень низком давлении клапан модели 750-66-В обеспечивает полное открытие, максимальную проходимость потока и надежное закрытие.

Наполнение резервуара на возвышенности


В системе наполняющей резервуар и обеспечивающей потребителей «нижней» зоны (как показано на схеме), есть необходимость в установлении приоритета потребителей над наполнением резервуара, с помощью установки клапана модели 753-66 – резервуарного клапана с функции поддержания давления.


Самотечное наполнение резервуаров на низменности

В случае если подача воды для наполнения резервуара и потребителей осуществляется из одного источника, требуется установление приоритетов.

Распространенный метод установления приоритета по величине перепада давления затруднителен ввиду малой разницы между давлениями на входе и выходе клапана. Предлагаемое решение: поддержание стабильного давления у приоритетного потребителя с помощью контроля скорости наполнения резервуара. Эту задачу решает клапан модели 757-66-U, резервуарный клапан с вертикальным поплавком для двухуровневого управления и функцией регулирования расхода.

Серия 700

700 SIGMA EN

Технические данные

Форма клапана: Наклонный Ү

Номинальное давление: до 25 бар; 400 PSI

Торцевые соединения: фланцевые (все стандарты)

Типы запорных элементов: Плоский, V-port, кавитационные

корзины С1, С2

Температурный диапазон: 80°С, исполнение для холодной

воды

Опции для применения в условиях высоких температур:

доступны по запросу

Стандартные материалы

Корпус и привод: ВЧШГ 45

Крепежные элементы (болты, гайки, шпильки): нержавеющая

сталі

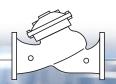
Внутренние части: нержавеющая сталь, бронза и сталь с

покрытием

Мембрана: синтетический каучук армированный тканью

Уплотнения: синтетический каучук **Покрытие:** темно-синее эпоксидное Друге материалы по запросу

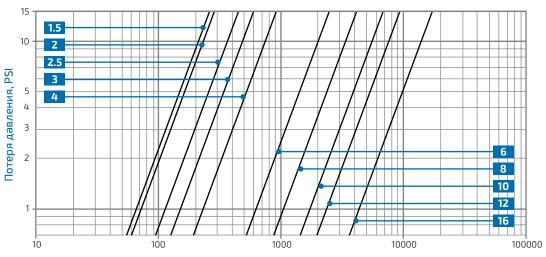
Размеры и вес


Размер	дюймы	1.5"	2"	2.5"	3"	4"	6"	8"	10"	12"	16"
	мм	40	50	65	80	100	150	200	250	300	400
L	дюймы	9	9	11.3	12.1	13.7	18.7	23.4	28.5	33.2	42.9
	ММ	230	230	290	310	350	480	600	730	850	1100
W	дюймы	6	6.4	7	8.2	9.9	12.5	15.6	18.7	22.2	31.8
VV	ММ	155	165	180	210	255	320	400	480	570	815
h*	дюймы	3.2	3.4	3.6	4.2	5.1	6.4	7.5	8.9	10.6	13
	MM	81	86	92	108	130	163	193	227	272	334
1.14	дюймы	9.1	9.6	11.3	9.9	12.5	20	24.1	28.3	34.4	45.7
H*	MM	234	246	290	252	318	514	618	725	881	1171
D #	фунты	27	29	41.4	61	102	211	346	562	885	2142
Bec*	КГ	12	14	20	28	47	96	158	256	403	974
Объем камеры	галлоны	0.03	0.03	0.08	0.08	0.12	0.57	1.19	2.24	3.27	7.87
привода	Л	0.125	0.125	0.3	0.3	0.45	2.15	4.5	8.5	12.4	29.8
V	дюймы	0.63	0.63	0.87	0.98	1.06	1.97	2.44	2.76	3.94	5.28
Ход штока	MM	16	16	22	25	27	50	62	70	100	134
а	дюймы				³⁄₃'' NPT			½" NPT			
b	дюймы			1/8" NPT			¼'' NPT ³⁄8'' N			NPT	¾" BSP
С	дюймы	¼" NPT ½" NPT								NPT	¾" BSP
G	дюймы	³¼'' G 2'' G									3" G

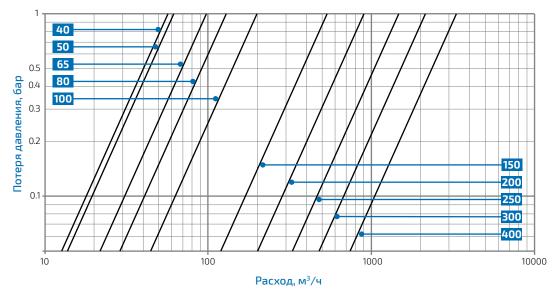
^{*} Максимальные размеры

Коэффициент пропускной способности

Размер	дюймы	1.5"	2"	2.5"	3"	4"	6"	8"	10"	12"	16"
	мм	40	50	65	80	100	150	200	250	300	400
Плоский диск	Cv	66	72	113	150	231	624	1045	1709	2472	3812
	Kv	57	62	98	130	200	540	905	1480	2140	3300
	К	1.2	2.6	2.9	3.8	3.9	2.7	3.1	2.8	2.8	2.7
V-порт	Cv	53	55	84	118	162	523	886	1513	2241	3430
	Kv	46	48	73	102	140	453	767	1310	1940	2970
	К	1.9	4.3	5.3	6.2	8.0	3.9	4.3	3.6	3.4	4.6



Серия 700


Расходные характеристики

Британская система мер

Расход, галл/мин

Метрическая система мер

^{*} Графики представлены для полностью открытых клапанов. Используйте программу BERMAD Sizing для правильного подбора.

Перепад давления и вычисление расхода

$$Cv = \frac{Q}{\sqrt{\Lambda P}}$$

$$\Delta P = \left(\frac{Q}{CV}\right)^2$$

$$Kv = \frac{Q}{\sqrt{\Lambda P}}$$

$$\Delta P = \left(\frac{Q}{K_V}\right)^2$$

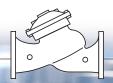
Сv = коэффициент пропускной способности клапана

(расход в галл/мин при $\Delta P=1$ psi)

= расход воды, галл/мин

 ΔP = дифференциальное давление, psi

Kv = 0.866 * Cv


Kv = коэффициент пропускной способности клапана (расход в $M^3/4$ при $\Delta P=1$ бар)

Q = pacxoд воды, м³/ч

 ΔP = дифференциальное давление, бар

Cv = 1.155 * Kv

Серия 700

700 SIGMA ES

Технические данные

Форма клапана: Наклонный Ү

Номинальное давление: до 25 бар; 400 PSI

Торцевые соединения: фланцевые (все стандарты) **Типы запорных элементов:** Плоский, V-port,

кавитационные корзины С1, С2

Температурный диапазон: 80°С,исполнение для

холодной воды

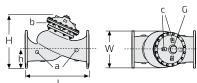
Опции для применения в условиях высоких температур:

доступны по запросу

Стандартные материалы

Корпус и привод: ВЧШГ 45

Крепежные элементы (болты, гайки, шпильки):


нержавеющая сталь

Внутренние части: нержавеющая сталь, бронза и сталь с

покрытием

Мембрана: синтетический каучук армированный тканью

Уплотнения: синтетический каучук Покрытие: темно-синее эпоксидное Друге материалы по запросу

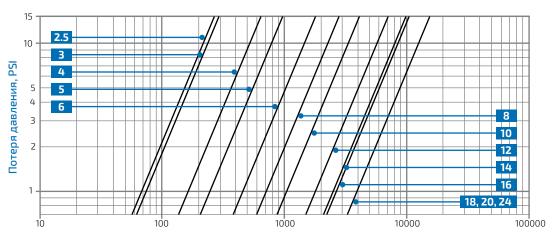
Размеры и вес

	L														
D	дюймы	2.5"	3"	4"	5"	6"	8"	10"	12"	14"	16"	18"	20"	24"	
Размер	мм	65	80	100	125	150	200	250	300	350	400	450	500	600	
L	дюймы	11.3	12.1	13.7	15.8	18.7	23.4	28.5	33.2	38.2	42.9	46.8	48.8	56.6	
	MM	290	310	350	400	480	600	730	850	980	1100	1200	1250	1450	
101	дюймы	7.4	8.2	9.9	10.6	12.5	14.8	17.6	21.1	22.8	25.7	31.8	32	36	
W	MM	190	210	255	270	320	380	450	540	585	660	815	815	920	
h*	дюймы	3.8	4.2	5.1	5.5	6.4	7.5	8.9	10.3	11.7	13	14.1	16	19	
	MM	98	108	130	140	163	193	227	265	299	334	361	398	490	
H*	дюймы	9.4	9.8	12.4	14.7	16.0	19.7	23.4	28.1	35.5	36.8	46.6	48	49	
	MM	242	252	318	375	411	506	600	721	909	943	1195	1220	1240	
D 4	фунты	39	48	82	133	172	273	435	673	1006	1132	2253	2386	2838	
Bec*	КГ	18	22	38	62	78	125	198	306	457	515	1024	1085	1290	
Объем камеры	галлоны	0.03	0.03	0.08	0.12	0.13	0.57	1.19	2.24	3.27	7.87	7.87	7.87	7.87	
привода '	Л	0.125	0.125	0.3	0.45	0.5	2.15	4.5	8.5	12.4	29.8	29.8	29.8	29.8	
V	дюймы	0.63	0.87	0.98	1.06	1.61	1.97	2.44	2.75	3.94	3.94	5.28	5.28	5.28	
Ход штока	MM	16	22	25	27	41	50	62	70	100	100	134	134	134	
а	дюймы			3/8''	NPT				1/2''	NPT		1" BSP			
b	дюймы		1/8′′ [VPT			1⁄4" NPT			³⁄8'' NPT			³⁄4" BSP		
С	дюймы				1⁄4" NPT		½" NPT						³⁄4" BSP		
G	дюймы	³⁄4'' G						2'		3" G					

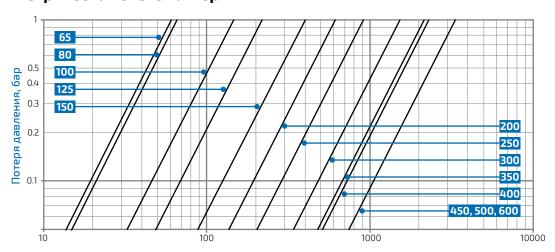
^{*} Максимальные размеры ** Для 24 дюймового клапана размеры указаны без монтажной рамы

Коэффициент пропускной способности

Размер	дюймы	2.5"	3"	4"	5"	6"	8"	10"	12"	14"	16"	18"	20"	24"
	ММ	65	80	100	125	150	200	250	300	350	400	450	500	600
Плоский диск	Cv	69	75	165	248	456	705	1045	1756	2472	2599	3812	3812	3812
	Kv	60	65	143	215	395	610	905	1520	2140	2250	3300	3300	3300
	К	7.8	15.2	7.7	8.3	5.1	6.7	7.5	5.5	5.1	7.9	5.9	9.0	18.7
	Cv	59	64	142	211	388	599	888	1492	2145	2341	3430	3430	3430
V-Port	Kv	51	55	123	183	336	519	769	1292	1857	2027	2970	2970	2970
	К	10.8	21.2	10.4	11.4	7.0	9.3	10.4	7.6	6.8	9.8	7.3	11.1	23.0



Серия 700


Расходные характеристики

Британская система мер

Расход, галл/мин

Метрическая система мер

Перепад давления и вычисление расхода

$$Cv = \frac{Q}{\sqrt{\Delta P}}$$

$$\Delta P = \left(\frac{Q}{Cv}\right)^2$$

$$Kv = \frac{Q}{\sqrt{\Delta P}}$$

$$\Delta P = \left(\frac{Q}{K_V}\right)^2$$

Cv = коэффициент пропускной способности клапана (расход в галл/мин при ΔP=1 psi)

(расход в галл/мин при $\Delta P = 0$ расход воды, галл/мин

 ΔP = дифференциальное давление, psi

Kv = 0.866 * Cv

Кv = коэффициент пропускной способности клапана

(расход в $м^3/ч$ при $\Delta P=1$ бар)

Q = pacxoд воды, м³/ч

 ΔP = дифференциальное давление, бар

Cv = 1.155 * Kv

